Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.649
Filtrar
1.
Physiol Plant ; 176(2): e14265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556740

RESUMO

Plant species distribution across ecosystems is influenced by multiple environmental factors, and recurrent seasonal stress events can act as natural selection agents for specific plant traits and limit species distribution. For that, studies aiming at understanding how environmental constraints affect adaptive mechanisms of taxonomically closely related species are of great interest. We chose two Scabiosa species inhabiting contrasting environments: the coastal scabious S. atropurpurea, typically coping with hot-dry summers in a Mediterranean climate, and the mountain scabious S. columbaria facing cold winters in an oceanic climate. A set of functional traits was examined to assess plant performance in these congeneric species from contrasting natural habitats. Both S. atropurpurea and S. columbaria appeared to be perfectly adapted to their environment in terms of adjustments in stomatal closure, CO2 assimilation rate and water use efficiency over the seasons. However, an unexpected dry period during winter followed by the typical Mediterranean hot-dry summer forced S. atropurpurea plants to deploy a set of photoprotective responses during summer. Aside from reductions in leaf water content and Fv/Fm, photoprotective molecules (carotenoids, α-tocopherol and anthocyanins) per unit of chlorophyll increased, mostly as a consequence of a severe chlorophyll loss. The profiling of stress-related hormones (ABA, salicylic acid and jasmonates) revealed associations between ABA and the bioactive jasmonoyl-isoleucine with the underlying photoprotective response to recurrent seasonal stress in S. atropurpurea. We conclude that jasmonates may be used together with ABA as a functional trait that may, at least in part, help understand plant responses to recurrent seasonal stress in the current frame of global climate change.


Assuntos
Antocianinas , Ciclopentanos , Ecossistema , Oxilipinas , Estações do Ano , Clorofila , Folhas de Planta/fisiologia , Água
2.
Planta ; 259(6): 129, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639804

RESUMO

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Assuntos
Resistência à Doença , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
3.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621873

RESUMO

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Assuntos
Ciclopentanos , Perfilação da Expressão Gênica , Mentha , Oxilipinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética
4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612625

RESUMO

Extreme drought weather has occurred frequently in recent years, resulting in serious yield loss in tea plantations. The study of drought in tea plantations is becoming more and more intensive, but there are fewer studies on drought-resistant measures applied in actual production. Therefore, in this study, we investigated the effect of exogenous tea polyphenols on the drought resistance of tea plant by pouring 100 mg·L-1 of exogenous tea polyphenols into the root under drought. The exogenous tea polyphenols were able to promote the closure of stomata and reduce water loss from leaves under drought stress. Drought-induced malondialdehyde (MDA) accumulation in tea leaves and roots was also significantly reduced by exogenous tea polyphenols. Combined transcriptomic and metabolomic analyses showed that exogenous tea polyphenols regulated the abnormal responses of photosynthetic and energy metabolism in leaves under drought conditions and alleviated sphingolipid metabolism, arginine metabolism, and glutathione metabolism in the root system, which enhanced the drought resistance of tea seedlings. Exogenous tea polyphenols induced jasmonic acid-isoleucine (JA-ILE) accumulation in the root system, and the jasmonic acid-isoleucine synthetase gene (TEA028623), jasmonic acid ZIM structural domain proteins (JAMs) synthesis genes (novel.22237, TEA001821), and the transcription factor MYC2 (TEA014288, TEA005840) were significantly up-regulated. Meanwhile, the flavonoid metabolic flow was significantly altered in the root; for example, the content of EGCG, ECG, and EGC was significantly increased. Thus, exogenous tea polyphenols enhance the drought resistance of tea plants through multiple pathways.


Assuntos
Camellia sinensis , Ciclopentanos , Resistência à Seca , Oxilipinas , Isoleucina , Polifenóis/farmacologia , Camellia sinensis/genética , Flavonoides , Chá
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612774

RESUMO

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Assuntos
Ciclopentanos , Isoleucina/análogos & derivados , Litchi , Oxilipinas , Litchi/genética , Peróxido de Hidrogênio , Desenvolvimento Embrionário , Poliaminas , Espermidina , Putrescina , Espermina , Arginina , Divisão Celular , Glucosídeos
6.
BMC Plant Biol ; 24(1): 266, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600447

RESUMO

BACKGROUND: Mango (Mangifera indica L.) is grown in Hainan, Guangdong, Yunnan, Sichuan, and Fujian provinces and Guanxi autonomous region of China. However, trees growing in these areas suffer severe cold stress during winter, which affects the yield. To this regard, data on global metabolome and transcriptome profiles of leaves are limited. Here, we used combined metabolome and transcriptome analyses of leaves of three mango cultivars with different cold stress tolerance, i.e. Jinhuang (J)-tolerant, Tainung (T) and Guiremang No. 82 (G)-susceptible, after 24 (LF), 48 (MF) and 72 (HF) hours of cold. RESULTS: A total of 1,323 metabolites belonging to 12 compound classes were detected. Of these, amino acids and derivatives, nucleotides and derivatives, and lipids accumulated in higher quantities after cold stress exposure in the three cultivars. Notably, Jinhuang leaves showed increasing accumulation trends of flavonoids, terpenoids, lignans and coumarins, and alkaloids with exposure time. Among the phytohormones, jasmonic acid and abscisic acid levels decreased, while N6-isopentenyladenine increased with cold stress time. Transcriptome analysis led to the identification of 22,526 differentially expressed genes. Many genes enriched in photosynthesis, antenna proteins, flavonoid, terpenoid (di- and sesquiterpenoids) and alkaloid biosynthesis pathways were upregulated in Jihuang leaves. Moreover, expression changes related to phytohormones, MAPK (including calcium and H2O2), and the ICE-CBF-COR signalling cascade indicate involvement of these pathways in cold stress responses. CONCLUSION: Cold stress tolerance in mango leaves is associated with regulation of primary and secondary metabolite biosynthesis pathways. Jasmonic acid, abscisic acid, and cytokinins are potential regulators of cold stress responses in mango leaves.


Assuntos
Ciclopentanos , Mangifera , Oxilipinas , Transcriptoma , Resposta ao Choque Frio/genética , Mangifera/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Peróxido de Hidrogênio/metabolismo , China , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
7.
Biochem Pharmacol ; 223: 116198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588830

RESUMO

Agents that inhibit bromodomain and extra-terminal domain (BET) proteins have been actively tested in the clinic as potential anticancer drugs. NEDD8-activating enzyme (NAE) inhibitors, represented by MLN4924, target the only activation enzyme in the neddylation pathway that has been identified as an attractive target for cancer therapy. In this study, we focus on the combination of BET inhibitors (BETis) and NAE inhibitors (NAEis) as a cancer therapeutic strategy and investigate its underlying mechanisms to explore and expand the application scope of both types of drugs. The results showed that this combination synergistically inhibited the proliferative activity of tumor cells from different tissues. Compared to a single drug, combination therapy had a weak effect on cycle arrest but significantly enhanced cell apoptosis. Furthermore, the growth of NCI-H1975 xenografts in nude mice was significantly inhibited by the combination without obvious body weight loss. Research on the synergistic mechanism demonstrated that combination therapy significantly increased the mRNA and protein levels of the proapoptotic gene BIM. The inhibition and knockout of BIM significantly attenuated the apoptosis induced by the combination, whereas the re-expression of BIM restored the synergistic effects, indicating that BIM induction plays a critical role in mediating the enhanced apoptosis induced by the co-inhibition of BET and NAE. Together, the enhanced transcription mediated by miR-17-92 cluster inhibition and reduced degradation promoted the increase in BIM levels, resulting in a synergistic effect. Collectively, these findings highlight the need for further clinical investigation into the combination of BETi and NAEi as a promising strategy for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Ciclopentanos/farmacologia , Camundongos Nus , Proteína 11 Semelhante a Bcl-2/metabolismo
8.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611756

RESUMO

Isatropolone C from Streptomyces sp. CPCC 204095 features a fused cyclopentadienone-tropolone-oxacyclohexadiene tricyclic moiety in its structure. Herein, we report an isatropolone C dimer derivative, di-isatropolone C, formed spontaneously from isatropolone C in methanol. Notably, the structure of di-isatropolone C resolved by NMR reveals a newly formed cyclopentane ring to associate the two isatropolone C monomers. The configurations of four chiral carbons, including a ketal one, in the cyclopentane ring are assigned using quantum NMR calculations and DP4+ probability. The plausible molecular mechanism for di-isatropolone C formation is proposed, in which complex dehydrogenative C-C bond coupling may have happened to connect the two isatropolone C monomers. Like isatropolone C, di-isatropolone C shows the biological activity of inducing autophagy in HepG2 cells.


Assuntos
Autofagia , Carbono , Compostos Heterocíclicos de Anéis Fundidos , Ciclopentanos , Éteres , Polímeros
9.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612510

RESUMO

The ATP-dependent caseinolytic protease (Clp) system has been reported to play an important role in plant growth, development, and defense against pathogens. However, whether the Clp system is involved in plant defense against herbivores remains largely unclear. We explore the role of the Clp system in rice defenses against brown planthopper (BPH) Nilaparvata lugens by combining chemical analysis, transcriptome, and molecular analyses, as well as insect bioassays. We found the expression of a rice Clp proteolytic subunit gene, OsClpP6, was suppressed by infestation of BPH gravid females and mechanical wounding. Silencing OsClpP6 enhanced the level of BPH-induced jasmonic acid (JA), JA-isoleucine (JA-Ile), and ABA, which in turn promoted the production of BPH-elicited rice volatiles and increased the resistance of rice to BPH. Field trials showed that silencing OsClpP6 decreased the population densities of BPH and WBPH. We also observed that silencing OsClpP6 decreased chlorophyll content in rice leaves at early developmental stages and impaired rice root growth and seed setting rate. These findings demonstrate that an OsClpP6-mediated Clp system in rice was involved in plant growth-defense trade-offs by affecting the biosynthesis of defense-related signaling molecules in chloroplasts. Moreover, rice plants, after recognizing BPH infestation, can enhance rice resistance to BPH by decreasing the Clp system activity. The work might provide a new way to breed rice varieties that are resistant to herbivores.


Assuntos
Ciclopentanos , Hemípteros , Oryza , Oxilipinas , Feminino , Animais , Proteases Dependentes de ATP , Oryza/genética , Melhoramento Vegetal , Peptídeo Hidrolases , Isoleucina , Hemípteros/genética , Trifosfato de Adenosina
10.
Sci Rep ; 14(1): 9338, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654120

RESUMO

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Assuntos
Resistência à Doença , Ácido Láctico , Tabaco , Oxilipinas , Phytophthora , Doenças das Plantas , Phytophthora/patogenicidade , Phytophthora/fisiologia , Tabaco/microbiologia , Tabaco/imunologia , Tabaco/genética , Tabaco/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Oxilipinas/metabolismo , Ácido Láctico/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo
11.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654166

RESUMO

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sítios de Ligação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Genoma de Planta , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658156

RESUMO

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Assuntos
Acetatos , Alelos , Afídeos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Afídeos/genética , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Perfilação da Expressão Gênica , Animais , Regulação da Expressão Gênica de Plantas , Variação Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
13.
Physiol Plant ; 176(2): e14260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511471

RESUMO

Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.


Assuntos
Acetatos , Bacopa , Ciclopentanos , Oxilipinas , Saponinas , Triterpenos , Bacopa/genética , Bacopa/química , Glicosiltransferases/genética , Vias Biossintéticas , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , 60630 , Difosfato de Uridina , Extratos Vegetais/química
14.
Physiol Plant ; 176(2): e14257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504376

RESUMO

The plant hormone jasmonic acid (JA) is a signalling compound involved in the regulation of cellular defence and development in plants. In this study, we investigated the roles of a JA-responsive MYB transcription factor, JMTF1, in the JA-regulated defence response against rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). JMTF1 did not interact with any JASMONATE ZIM-domain (JAZ) proteins. Transgenic rice plants overexpressing JMTF1 showed a JA-hypersensitive phenotype and enhanced resistance against Xoo. JMTF1 upregulated the expression of a peroxidase, OsPrx26, and monoterpene synthase, OsTPS24, which are involved in the biosynthesis of lignin and antibacterial monoterpene, γ-terpinene, respectively. OsPrx26 was mainly expressed in the vascular bundle. Transgenic rice plants overexpressing OsPrx26 showed enhanced resistance against Xoo. In addition to the JA-hypersensitive phenotype, the JMTF1-overexpressing rice plants showed a typical auxin-related phenotype. The leaf divergence and shoot gravitropic responses were defective, and the number of lateral roots decreased significantly in the JMTF1-overexpressing rice plants. JMTF1 downregulated the expression of auxin-responsive genes but upregulated the expression of OsIAA13, a suppressor of auxin signalling. The rice gain-of-function mutant Osiaa13 showed high resistance against Xoo. Transgenic rice plants overexpressing OsEXPA4, a JMTF1-downregulated auxin-responsive gene, showed increased susceptibility to Xoo. JMTF1 is selectively bound to the promoter of OsPrx26 in vivo. These results suggest that JMTF1 positively regulates disease resistance against Xoo by coordinating crosstalk between JA- and auxin-signalling in rice.


Assuntos
Oryza , Xanthomonas , Oryza/metabolismo , Transdução de Sinais/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Resistência à Doença/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Mar Drugs ; 22(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535456

RESUMO

Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.


Assuntos
Ciclopentanos , Glicerol/análogos & derivados , Glicerofosfatos , Oxilipinas , Rodófitas , Alga Marinha , Galactose , alfa-Galactosidase , Galactanos , Glucose , Difosfato de Uridina
16.
Nat Commun ; 15(1): 2262, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480732

RESUMO

The inter-subspecific indica-japonica hybrid rice confer potential higher yield than the widely used indica-indica intra-subspecific hybrid rice. Nevertheless, the utilization of this strong heterosis is currently hindered by asynchronous diurnal floret opening time (DFOT) of indica and japonica parental lines. Here, we identify OsMYB8 as a key regulator of rice DFOT. OsMYB8 induces the transcription of JA-Ile synthetase OsJAR1, thereby regulating the expression of genes related to cell osmolality and cell wall remodeling in lodicules to promote floret opening. Natural variations of OsMYB8 promoter contribute to its differential expression, thus differential transcription of OsJAR1 and accumulation of JA-Ile in lodicules of indica and japonica subspecies. Furthermore, introgression of the indica haplotype of OsMYB8 into japonica effectively promotes DFOT in japonica. Our findings reveal an OsMYB8-OsJAR1 module that regulates differential DFOT in indica and japonica, and provide a strategy for breeding early DFOT japonica to facilitate breeding of indica-japonica hybrids.


Assuntos
Genes de Plantas , Isoleucina/análogos & derivados , Oryza , Melhoramento Vegetal , Vigor Híbrido , Ciclopentanos/metabolismo , Oryza/metabolismo
17.
BMC Genomics ; 25(1): 254, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448814

RESUMO

BACKGROUND: Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS: The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS: These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.


Assuntos
Ciclopentanos , Receptores Ativados por Proliferador de Peroxissomo , Fosfatidilinositol 3-Quinases , Pirimidinas , Feminino , Animais , Coelhos , Células da Granulosa , Metabolismo dos Lipídeos
18.
Genes (Basel) ; 15(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38540383

RESUMO

Many monoterpenoid indole alkaloids (MIAs) produced in Catharanthus roseus have demonstrated biological activities and clinical potential. However, their complex biosynthesis pathway in plants leads to low accumulation, limiting therapeutic applications. Efforts to elucidate the MIA biosynthetic regulatory mechanism have focused on improving accumulation levels. Previous studies revealed that jasmonic acid (JA), an important plant hormone, effectively promotes MIA accumulation by inducing the expression of MIA biosynthesis and transport genes. Nevertheless, excessive JA signaling can strongly inhibit plant growth, decreasing MIA productivity in C. roseus. Therefore, identifying key components balancing growth and MIA production in the JA signaling pathway is imperative for effective pharmaceutical production. Here, we identify a homolog of the jasmonate transporter 1, CrJAT1, through co-expression and phylogenetic analyses. Further investigation demonstrated that CrJAT1 can activate JA signaling to promote MIA accumulation without compromising growth. The potential role of CrJAT1 in redistributing intra/inter-cellular JA and JA-Ile may calibrate signaling to avoid inhibition, representing a promising molecular breeding target in C. roseus to optimize the balance between growth and specialized metabolism for improved MIA production.


Assuntos
Catharanthus , Ciclopentanos , Oxilipinas , Alcaloides de Triptamina e Secologanina , Monoterpenos/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Filogenia , Melhoramento Vegetal , Alcaloides de Triptamina e Secologanina/metabolismo , Transdução de Sinais
19.
Clin Chim Acta ; 557: 117860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508572

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common infertility disorder which affects reproductive-aged women. However, metabolic change profiles of follicular fluid (FF) in lean and obese women diagnosed with and without PCOS remains unclear. METHODS: 95 infertile women were divided into four subgroups: LC (lean control), OC (overweight control), LP (lean PCOS), and OP (overweight PCOS). The FF samples were collected during oocyte retrieval and assayed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) metabolomics. RESULTS: A total of 236 metabolites were identified by metabolic analysis. The pathway enrichment analysis revealed that the glycerophospholipid metabolism (impact = 0.11182), ether lipid metabolism (impact = 0.14458), and primary bile acid biosynthesis (impact = 0.03267) were related to metabolic pathway between PCOS and control. Correlation analyses showed that epitestosterone sulfate was found positively correlated with fertilization rate in PCOS, while falcarindione, lucidone C. and notoginsenoside I was found to be negatively correlated. The combined four biomarkers including lucidone C, epitestosterone sulfate, falcarindione, and notoginsenoside I was better in predicting live birth rate, with AUC of 0.779. CONCLUSION: The follicular fluid of women with PCOS showed unique metabolic characteristics. Our study provides better identification of PCOS follicular fluid metabolic dynamics, which may serve as potential biomarkers of live birth.


Assuntos
Ciclopentanos , Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Adulto , Líquido Folicular/metabolismo , Nascido Vivo , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/metabolismo , Infertilidade Feminina/diagnóstico , 60705 , Sobrepeso , Epitestosterona/análise , Epitestosterona/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fertilização In Vitro , Biomarcadores/análise , Sulfatos/análise , Sulfatos/metabolismo
20.
J Plant Physiol ; 296: 154225, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522214

RESUMO

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Assuntos
Arabidopsis , Compostos de Diazônio , Isoleucina/análogos & derivados , Piridinas , Arabidopsis/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...